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P P Martin 
Department of Mathematics, University of Birmingham, Birmingham B15 2 l T ,  UK 

Received 16 April 1987, in final form 21 October 1987 

Abstract. We show that a scheme based on the critical Andrews-Baxter-Forrester model 
may be used to construct all known representations of operators obeying the Temperley- 
Lieb relations. Using associated groups we show, for a small number of operators, that 
this scheme gives the complete set of irreducible representations. We obtain the 
degeneracies of the transfer matrix spectrum for the q-state Potts model. 

In a recent letter (Martin 1987a, hereafter referred to as I) we showed how to write 
down irreducible representations of the operators {U, ,  i = 1, . . . ,2n  - 1) satisfying the 
Temperley-Lieb relations (Temperley and Lieb 1971): 

uf = q ‘ / 2  U, 

The square lattice q-state Potts model n-site layer transfer matrix (Baxter 1982) may 
be written in terms of a reducible representation of these operators as follows: 

where x = q-’” (exp(P) - 1) and P is the coupling parameter. Several other statistical 
mechanical models may be written by using different representations of the same 
operators (see I ) .  For a given model the decomposition into irreducible representations 
is of particular interest, since it corresponds to a block diagonalisation of the transfer 
matrix. Different blocks are then responsible for the free energy and the various 
different correlation functions governing the long-range behaviour of the model. The 
degeneracies of irreducible representations occurring in the decomposition will in turn 
give the degeneracies of eigenvalues in  the transfer matrix spectrum. The decomposition 
into irreducible representations is also of particular interest because it picks out the 
‘Beraha’ q values 

(3) r = 3,4,5 . . . 
as special cases. These are cases which may be associated with conformal field theories 
at the critical point xc= 1 (Kuniba er a1 1986). We would like to examine this 
connection. 

A first step in this direction is to associate the Temperley-Lieb operators with 
groups. This also allows us, in principle, to check the completeness of our set of 
irreducible representations using orthogonality theorems (see later). In the present 

q = 4 cos2( T /  r )  
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paper we start by reviewing and generalising the procedure for writing down irreducible 
representations, including several new results. We then discuss possible associated 
groups (one such is the Artin braid group) and their uses. We check the completeness 
of our set of representations for a small number of operators, and obtain the 
degeneracies of the transfer matrix spectrum using group theoretical techniques. 

In certain statistical mechanical models the relations (1) can be intimately connected 
with the star-triangle equation. This equation is a commutativity condition on transfer 
matrices which, under some further conditions, leads to solvability of the relevant 
model. We are not concerned at the moment with such results in themselves (a beautiful 
exposition may be found in Baxter (1982)), but we may use the statistical mechanical 
models involved to construct representations of the Temperley- Lieb operators, as 
follows. It is implicit in previous results (Kuniba et al 1986, I )  that if a solution 
w ( a ,  6, c, d ;  U )  of the star-triangle equation (Baxter 1982) 

2 w ( a ,  b, c, d ;  u)w(d, c,f, g ;  u)w(c, b, e , f ;  U - U )  
c 

=E w(c, e , f ,  g ;  u ) w ( a ,  b, e, c ;  u)w(d, a, c,g; U - U )  ( 4 a )  
C 

can be written in the form 

w ( a ,  b, c, d ;  U )  = p ( u )  (,";cy+ - b) 

where p and y depend on a continuous variable U and K depends on discretely valued 
variables, a, b, c and d, and 

4 %  b, c, d ;  0 )  = P(O)&, ,  (4c) 

then the { U ; }  defined by 

where s, s' correspond to specific values for sets of 2 n  + 1 such discrete variables {s,} 
and { s i } ,  are U independent and obey 

l i - j l >  1 

where 

&= Y ( U )  + Y ( - - U )  

R = Y ( u ) Y ( ~ - ~ ) + Y ( ~ ) Y ( - u ) - y o y ( v -  U )  

and 

are automatically independent of U (by ( 4 ) ) .  
In I we focused attention on solutions with R = 1 which are associated with 

irreducible representations of the { U , } .  These solutions arise in the critical square 
lattice ( r  - 1)-state Andrews-Baxter-Forrester (ABF)  model (Andrews et al 1984) with 
fixed boundary conditions. Specifically, the representations are written in a basis in 
which the matrix row and column positions correspond to allowed configurations of 



Temperley- Lieb algebra 579 

the ABF lattice variables in a 2n + 1 site diagonal row: sl ,  s 2 , .  . . s,, . . . , s ~ , , + ~  (in the 
A B F  model s, E {1,2, .  . . , ( r -  1)) and Is, - S , + ~ I  = 1). The matrix elements ( Ut-l)r,s, are 
then zero unless all but possibly the ith lattice variables in configurations s and s’ (s, 
and s:, respectively) are the same and s , + ~  = st-,,  whereupon 

We will give explicit examples of such representations later on., We showed in I that 
it is the boundary conditions, the values of the first and last lattice variable in a diagonal 
row (sl ,  s ~ , , + ~ ) ,  which label the representation. We showed in particular that with s1 = 1 
the representation is irreducible provided that the ( r  - 1)-state restriction ( s i  E 

{ 1,2, .  . . , ( r  - 1)}) is observed. 
We now note that it is trivial to extend the scheme to any number of operators 1. 

If we have an even number of operators then the s, = 1 representations, for example, 
are labelled by the last lattice variable slt2 = sZn+* = 2m + 2  (cf sI+2 = s ~ , , + ~  = 2m + 1 for 
an odd number of operators) with m = 0, 1,2, . . . , n ;  the upper limit is determined by 
the ABF condition 

Is, -s,+11 = 1. 

The s1 = 1 representations are equivalent to those found using the generalised Young 
tableau construction of Temperley (1986) in which standard tableaux containing the 
standard tableau Tr‘-ll (i.e. the numbered tableau of one row of r - 1 boxes) are 
deleted. In this construction such a tableau corresponds to a vanishing idempotent 
(cf Hamermesh 1962). The relevant idempotents may be constructed as follows (from 
Temperley 1986): denoting the idempotent for T“-’] by idem[ r - 11 we have 

idem[ r - 21 (6) 
sinh((r-2)e) Ui+r-3 

idem[ r - 11 = idem[ r - 21 1 - ( sinh((r-1)e)  

where idem[ 11 = 1 and e’ + e-e = 4. 
For example, with r = 4 ( q  = 2) the idempotent 

vanishes in these representations (see later). 
In general, however, it is easy to find representations for which these idempotents 

do  not vanish. This is the case, for example, if the ( r  - 1)-state restriction in our 
ABF-based construction is relaxed (as it can be by continuity). Then, after regularising 
any resultant divergences (consider s , , ~  = r in (5)  or see I ) ,  the representation either 
becomes reducible into a copy of the original (state restriction observed) irreducible 
representation (if this exists, i.e. if slt2< r )  and a copy of a new representation for 
which the idempotent does not vanish in general; or, ifsIt2 3 r, forms a new representa- 
tion (see the appendix) with non-vanishing idempotent. Any further reduction to 
irreducible representations is manifested (given some care) by vanishing matrix ele- 
ments in the A B F  basis. For example the 42-dimensional representation (s l  = 1, sI1 = 1) 
with r = 3 ( q  = 1) has block diagonal form with the single-element subsets of basis 
configurations { 12121212121) and { 12345654321) each labelling one-dimensional 
blocks (consider r = 3 in equation (5) ) .  The former is the original ( r  - 1)-state restriction 
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observed representation ( U, = 1, all i) and the latter has U, = 0 (all i )  in which case 
the idempotent 1 - q-”‘U, (equation ( 6 ) )  is non-vanishing. 

As another example we will show that the 75-dimensional (sI = 1, s, I = 5) representa- 
tion of the same operators reduces to 4 0 0 3 4 0  1. Consider the 35-element subset of 
basis configurations with at least one lattice variable s, = 6 .  Now find the first such 
variable in the list s,, s 2 , .  . . , SI, and perform the transformation 

s, -+ 12 - s, 

on each subsequent variable. This converts the subset to the complete set of basis 
configurations for (s, = 1, s,, = 7) ,  but cancels out of (5). In other words the two 
35-element bases give equivalent representations. In the latter basis the single-element 
subset { 12345678987) labels a one-dimensional block. The generalisation of this pro- 
cedure to other sets of operators is straightforward. We note for later reference that 
the 40-element subset of (s, = 1, s I I  = 5) may be mapped to the 40-element subset of 
(sI = 1, sI1 = 1) by performing the transformation 

S, -+ 6 - S, 

on each variable after the first s, =3.  Again this means that the two representations 
are equivalent. 

Note that we find representations with no equivalent in the Young tableau construc- 
tion. These include, for example, the equivalent of the Burau representation of Artin’s 
braid group (see later and, for example, Birman (1974)) at the Beraha q values. This 
is the representation (s, = 1, slt2 = I ) ,  or m = n - 1, regardless of q. 

Furthermore, although away from the Beraha q-values representations with sI # 1 
are always reducible to copies of the s1 = 1 representations, this is not the case in 
general at the Beraha valbes. For example the ‘parasitic’ representation given in I for 
q = 2 is the indecomposable representation (sl = 2, s5 = 4) (after appropriate regularisa- 
tion using r = 4 +  E in (5)). Again these representations are not found in the Young 
tableau construction and their TI‘-’] idempotents do  not vanish. Conversely all known 
representations may now be constructed using the ABF-based scheme ! 

As an explicit example illustrating many of the points discussed above consider 
the five-site diagonal row ABF model with boundaries fixed to SI = 2  and S5=4.  The 
allowed configurations are {21234}, {23234}, {23434}, (23454) so we have 

I sin n/r [s in(n/r)  sin(3nl r)]’’’ 
sin 2tr/ r sin 2 n/ r 

U ,  = 

U, = 

[sin(n/ r )  sin(3tr/ r ) ~ ” ~  sin 3 H /  r 
sin 2 n /  r sin 2 r / r  

0 0  
I 0 0  

0 0 
sin 2 n / r  [sin(2tr/r) sin(4tr/ r)]”2 
sin 3 4 1  sin 3 n l  r 

sin 4 n l  r 
sin 3 n l r  sin 3 4  r 

0 0 

[sin(2n/ r )  s i n ( 4 ~ / r ) ] ” ~  
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U, = 

0 0  
sin 3rr l r  [ s in(3r / r )  sin(5~r/r)]”’ 
sin 4 ~ /  r 

[ s in(3~r / r )  s i n ( 5 ~ / r ) ] ” *  
sin 4 ~ /  r 
sin 5 X /  r 

order in E ,  

2 4 2  
U,-- 

E X  

0 0  
0 0  

3 T E  i m 
1+- i-- 

16 16 
i T E  5 7r& 

i-- -1 f- 
16 16 

After some &-dependent similarity transformations terms in l l e  cancel out of U3 
(consider the trace and determinant) and we may set E +. 0 leaving 

It is easy to check that these matrices satisfy the relations (1) with q = 2 .  Note that 
( r  - 1)-state condition relaxed representations are not in general Hermitian. The above 
representation is called ‘parasitic’ because the top left 2 x 2 block also forms a rep- 
resentation-the state restriction observed (SI = 1, S5 = 1) representation-but the other 
diagonal block does not. This type of representation occurs in the decomposition of 
some statistical mechanical models (for example the Temperley-Lieb (1971) staggered 
ice model) but not, for example, in the Potts model (see later). From the point of 
view of long-range properties of associated statistical mechanical models we are 
interested only in the irreducible content of this indecomposable representation and 
representations in general (consider the characteristic polynomial of a transfer matrix 
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(2) in this representation). In this case we have the top left 2 x 2 block and the two 
remaining diagonal elements which form separate irreducible representations. 

It is interesting to consider the decomposition, given in Jones (1983), of finite- 
dimensional C* algebras A, whose generators satisfy the relations (1) with Beraha q 
values. This decomposition gives a sum of those complex matrix algebras generated 
by the set of ( r  - 1)-state restriction observed s, = 1 irreducible representations alone. 
In general the other representations discussed above do not generate these matrix 
algebras (consider the ‘parasitic’ representation above). 

We now turn to consider the possible groups associated with the relations (1). The 
first of the relations implies that the { Ul} are essentially projections: consider 

e, = q-”* U, (8) 

1, = 1 - K ( q ) U, (9) 

may be used to form representation of various groups, depending on the form of the 
scalar function K(q) .  The relations (1) imply that the inverse of t ,  is also generated 
by ut 

(10) 

having no inverse. However, the operators 

t ; ’  = 1 - k ( q )  U, 

where 

k + K = q’I2EK. 

The first such group to be discussed in general terms was (see, for example, 
Temperley 1986) the Artin braid group, which may be represented using 

K ( q ) = e *  (11) 

(see also Jones 1985, Kauffman 1986a, b). This is the group of possible braidings of 
(1+1) strings. The group is infinite for any number of strings ( I +  1). However, 
Temperley pointed out that for q = 4 we have t f  = 1 and the representations reduce to 
those of the permutation group E,,,. It will be useful later to consider the presentations 
of these groups (see, for example, Magnus et af 1976) 

(12) ( f l , .  . . 1 t / ;  f I t l , l t ,  = t , + l t , t , + l ,  ‘It, = ‘,‘, l i - j l >  1) 

( f l , . . . , ~ ;  t f , ( t , t , + l ) 3 , t , t , = t , t ,  I i - j I > l )  (13) 

for the ( I  + 1) string braid group, and 

for E,,,. 
It is interesting to note that q = 4 is not the only exceptional case of (1  1). When 

we have r: = 1 as an additional relator in (12). In terms of q we have solutions to (14) 
at 

2s+k 
q = 4 cos( 7 -> 

where s = 1, . . . , k - 1 and k > 1. We see that branches of the Beraha q values, in general 

m = 1,2, . . . , r - 1 
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correspond to points of additional constraint and  therefore potential simplification in 
the braid group representation. It is not surprising from this point of view, therefore, 
that the representation structure of the { U , }  is different at these points. What is perhaps 
surprising is the order in which the r values in (16) appear as k increases in ( 1 5 ) :  

(17) 
In  general the braid group of more than two strings is complicated, but at certain 
Beraha q values the additional relators discussed above allow enough simplification 
to identify manageable groups. Working with these examples we can begin to explain 
the structure in (17). We can also check that the ABF-based construction finds all 
irreducible representations for the { U,} associated with three strings. 

For I = 1 (2 strings), of course, we have the group Z k  with k inequivalent irreducible 
representations. The trivial representation corresponds to U ,  = 0 (the ABF basis 
configuration { 123}), and U ,  = q’”(  { 121)) gives 

{rk, k = 2 , 3 , 4 . .  . } = { m , 6 , 4 ,  10,3, 14,8, 18,5,22, 12 ,26 ,7 , .  . .}. 

(18 )  2e  t ,  = -e 
which then accounts for the remaining (k - 2) representations by transformations which 
preserve presentation (12) and t :  = 1, but not the relations ( 1 ) .  

For 1 = 2  and k = 2  we know that Z3 has six elements in four classes giving two 
one-dimensional and  two two-dimensional representations. The known set of rep- 
resentations of the { U,} are U ,  = U2 = 0 (from the basis configuration (1234)) and 

U ,  = ( J q o )  

U = - (  1 1 q - 1  ) 
Jq 1 q - 1  

( q  = 4 )  from the configurations (1212) and (1232). Of course the doubling-up of 
representations for the { t,) comes from the transformation 

t ,  + - t ,  
which preserves presentation (13) but not relations ( 1 ) .  That is, a representation of 
the { U z }  implies a representation of the { t , }  but not necessarily vice versa. 

For I = 2 and k = 3 ( q  = 3) we have a group of 24 elements in seven classes. At 
first sight this appears more complicated, although we know only the same pair of 
representations for the {U,}  ( U, = 0 and  q = 3 in (19)). But this time the transformations 

where a3  = 1, induce three representations from each, and  there is a three-dimensional 
representation of the { t , }  which does not correspond to a representation of the {U,}: 

t,  + at, 

Here ti + at, is just a similarity transformation. Counting up  (i.e. summing the squares 
of dimensions of distinct irreducible representations, see, e.g., Hamermesh 1962), we 
find that the ABF representations of the { Ui}  are thus the complete set again. 



584 P P Mar t in  

For k = 4 ( q  = 2) we have a rather complicated group. However, a new relation 
appears 

2 2 2 2 -  2 2 2 2 t , t * t , t *  - t* t  1 t * t i .  

This enables us to construct a subgroup using i, = t f  as generators. Since f, may be 
constructed directly using 

i, = 1 - J 2 U ,  (22) 

we can equally well use this subgroup to check the representations of the {U,} .  The 
class structure implies four one-dimensional and one two-dimensional representations 
for the { f , } .  For this group (d4) the U, = 0 representation induces a further three using 
t ,  + rt t ,  and t 2 +  + t 2  separately (the relation (21) has two of each operator on each 
side), while all these transformations are simply similarity transformations on the 
two-dimensional representation (equation (19) with q = 2). In this example we see the 
second way in which special cases can arise in the group representations at the Beraha 
q values-by the appearance of new relations like (21). 

We will not consider every k value explicitly. The most interesting example among 
the remainder is k = 6 ( q  = 1). Again we use a subgroup-generated by f ,  = t : ,  This 
is an infinite group obeying f; = 1 only. The class structure is similar to that of the 
orthogonal group O(2) (see, e.g., Tung 1985), up to the choice of t ,  or t 2  as the 
reflection, except that this group has Z (integers under addition) as a normal subgroup. 
The trivial representation U, = 0 gives the one-dimensional representations (using 
i, + - f , )  and the reducible but indecomposable 2 x 2 representation ( q  = 1 in (19)) gives 
rise to the infinity of irreducible two-dimensional representations of the { f,} through 
the freedom to make an arbitrary similarity transformation on one of TI, f2, as follows: 

s ip I s - ’ =  ( O <  cp < Tr). cp ( c o s p  -sincp 
-sin p -cos cp 

Again we find that the ABF scheme gives all the irreducible representations of the {U,} .  
It is intriguing to note the appearance of the orthogonal group in this context, since 

the scaling limit of the relevant statistical mechanical models should be associated 
with the two-dimensional conformal group (Friedan et a1 1983). 

Unfortunately for greater numbers of strings the complications of the braid group 
ultimately defeat this approach. We note in passing, however, that there are a number 
of important and tractable cases not addressed above. For example the analysis for 
q = 3 is finite at 1 = 3. 

We now turn to another powerful group, represented using 

- 2  K = K = - .  
Jq 

This group has presentation 

( t i , .  . . , 1 , ;  t : ,  t,‘, = ‘,Il / i - j l >  1). 



Temperley- Lieb algebra 585 

It has representations in common with the subgroup generated by t ! l 2  (with t ,  the 
braid group generator defined in ( 1 1 )  and for even k )  when f !  = 1. But, of course, 
additional relators appear in general in these cases (consider q = 2 above). This 
observation will be important later. 

Away from the Beraha q values we note that we are free to make distinct similarity 
transformations on each generator in any representation of ( 2 5 )  

1, + ?, = s,r,s;' 

S,?, = p, I t  - j l >  1. 

( 2 4 )  

provided these transformations obey 

(27) 

If we make S2r-1 = 1 ( i  = 1,2,  . . .) then each distinct set of allowed transformations on 
the remaining generators will produce a new representation (cf (23)).  In  particular, 
but subject to the exceptions at the Beraha q values, this freedom is enough to ensure 
the existence of a representation which obeys 

( = 1 (28) 

with a corresponding set of similarity transformations {S I (  q)}. Such a representation 
is also a representation of the permutation group E,,,. Now consider the Potts 
representation of the { U , }  in the Potts basis (see Baxter 1982). It is easy to generalise 
this from 2 n  - 1 to I operators. After some work we find that for I = 2 ,  for instance, a 
sufficient condition on the similarity transformation Sz in this representation is 

= q  if q = 1 .  (29) 

Because of the cross product structure of the representation it is possible to 
generalise this for larger 1. Thus, provided there are no additional relators (as can 
occur at the Beraha q values) the Potts representation provides a representation of 

via (24) and (26). We can therefore use the orthogonality theorem for characters 
(see, for example, Leech and Newman 1970) to obtain the decomposition into 
irreducible representations of E,+l and hence of the { Ui} .  The orthogonality theorem 
is 

where G is the order of the group (in our case ( l + l ) ! ) ;  the sum is over classes 
(corresponding to possible partitionings of I +  1 numbers), d,  is the number of elements 
in a class (the number of ways of arranging I +  1 numbers in a given partition into 
cycles), ,y,(gc) is the trace of a class representative group element g, in representation 
r and n, is the number of copies of irreducible representation p in  r. All the quantities 
on the left may be calculated when r is the Potts representation (see also Martin 1986). 
For example, for 1 = 2, the quantity 

(31) 
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More complicated representatives are identified by reference to the possible partitions 
of 1 + 1 numbers and may be calculated using the cross product structure of the 
representation. In particular 

where 

and [ p ] .  is the integer part of p .  The characters of the irreducible representations xr 
are discussed, for example, in Hamermesh (1962). 

We will give some illustrative examples. Firstly, it is convenient to adopt a specific 
notation for labelling classes. Following Hamermesh we label a class (a ,  p, y, . . . ) if 
its elements have a 1-cycles, p 2-cycles, y 3-cycles and so on, thus 

a + 2 P + 3 y + .  . . = 1 + 1  

and the number of elements in the class is 

( 1 + 1 ) !  
. !(2PP!)(3Yy!). . . . 

Our notation for representations restricts attention to tableaux with only one or two 
rows (see above). If the length of the second row is zero (and restricting attention to 
I = 2n - 1 for convenience) then p = n and we have the trivial representation for which 

[ n + r . n - r l  - [ 2 n l  
X [ a  ,P, ? . . . I  - x ( u , P , Y . . . ) =  1 

where we have adopted an explicit (superscript) tableau notation for the representation. 
If n-p = 1 then we have 

[ 2 n - l , 1 ]  
X(0,P.v  . . . I  = a - 1 

and is a simple diagrammatical exercise (actually a set problem in Hamermesh) to obtain 

a ( a  - 3 )  
2 + Y + P Y + ( Q - -  1 ) 6  + E ( 3 3 )  

and so on. On the other hand the characters in the Potts representation are 
POIIS 

XIa ,p , y . f i  , = 4 " - = ( 9 - 2 ) p ( q - 3 ) y ( q ' - 4 4 + 2 ) 6 ( . .  .) (33a )  
where 

z = p + y + 2 6 + .  . . 
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and the subsequent factors may be obtained by induction using the first few (which 
we calculated explicitly). Comparing equations ( 3 0 ) ,  ( 3 3 )  and ( 3 3 a )  we see that the 
coefficient of q" in np is 

and that the coefficient of q n - l  is 
C n , p  = 6 , s  

provided we interpret 

for b strictly positive, and restrict to meaningful values of the indices. Subject to the 
same conditions the coefficient of q' may be written 

The reader may find it instructive to work through a particular case, such as n = 2,  
explicitly. The necessary tools are ready to hand in equations ( 3 0 ) ,  ( 3 3 )  and ( 3 3 a ) .  
We leave this as an exercise. 

Overall we find (provided q is an integer and not Beraha) that 

n+=n , , ,=  fi ( q - - 4 C o s I ( T ) )  
I =  1 2 m + a  ( 3 4 )  

where a = 1 if I is odd, a = 2 if I is even and m is also the classification of irreducible 
representations given in I (i.e. corresponding to the representation (sl = 1 ,  s,+> = 2 m  + 

This result gives the degeneracies of the Potts model transfer matrix spectrum. We 
note in particular that the free energy, coming from m = 0 (see Martin 1986), is unique 
and that the zero-temperature ground state (one eigenvalue from the m = 0 representa- 
tion and one from each of the ( q  - 1) m = 1 representations, see Martin (1987b)) is 
q-fold degenerate as required. 

Considering the Temperley-Lieb (or staggered ice model) representation (Temper- 
ley and Lieb 1971, Baxter 1982) of the { U,} it is again easy to generalise to 1 operators 
(cf Martin 1986). Here we find that 

a ) ) .  

XTL( il,ilZ. . . 6,) = 2'+l-' 
for 

( 3 5 )  

I ,  < 1, <. , . < I ,  c I 

ng = 2 p  + a .  ( 3 6 )  

so that 

This confirms the obvious generalisation of Baxter's (1986)  results for 1 = 1 ,  3 and 5 .  
As we have said, the above procedure does not work for the Beraha q values. For 

example it does not work for q = 1 , 2 , 3 .  One indication of this is the different form 
of the 'seed' condition on similarity transformations (equation ( 2 9 ) )  for q = 1. For 
q = 2 , 3  the condition cannot be generalised to larger 1. As far as the Potts representation 
is concerned, however, it is still possible to see how the decomposition to irreducible 
representations proceeds by using the decompositions of the ( r  - 1)-state condition 
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relaxed p representations discussed in I and above, and  the continuity of these 
representations with non-Beraha-valued representations at r -, r + E. 

For odd I our procedure formally gives degeneracies 

n,=-(n,-,+n,-,) with n , = l , n , = O  for q = 1 

for q = 2 (37)  n = ( _ l ) [ P / * I .  

n, = 2 s i n  (l -+- p + )  f o r q = 3 .  

However, the corresponding representations are in general reducible and all the 
apparently negative degeneracy contributions can cancel with elements in the decompo- 
sition of positive degeneracy representations. 

For example, with 1 = 9 we have, for q = 1, the following. 

Representation 
P “r Decomposition 

0 1 1 +41  
1 0 90 
2 -1 34+41 
3 1 1+34 
4 0 9 
5 -1 1 

- 

After cancelling off equivalent representations (see the examples below equation (7)) 
with equal and  opposite ‘degeneracies’ we find just the one-dimensional ( s ,  = 1, slt2 = 
1)-state restriction observed representation remaining. Of course this is the general 
result for q = 1. 

For q = 2 we have 

P ”, Decomposition 

0 1 
1 1 16 + 7 4  
& -1 14+ 1 
3 -1  26 + 9  
4 1 9 
5 1 1 

16+26  -_ 

7 

and for q = 3: 

P “ r  Decomposition 

0 1 41 + 1 
1 7 8 1  + 9  
2 1 40 + 35 
3 -1  35 
4 - 2  9 
5 -1  1 

In  general, for q = 2 ,  we have just one copy of each of the irreducible ( s ,  = 1, s , + ~  = 1) 
and  (s, = 1, slc2 = 3l-state restriction observed representations remaining, and for q = 3 
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we have one copy of each of the irreducible (sl = 1, 
representations and two copies of (sl = 1 ,  sI+z = 3) .  

( 7 )  and Temperley (1986)). If we replace {U,}  with { V,}  using 

= 1 )  and (s, = 1, = 5) 

The surviving q = 2 representations are those with vanishing idempotent (equation 

Js U, = - ( 1  + V I )  
2 

the transfer matrix (2)  is then in the form given in Schultz et a1 (1964). Equation (7 )  
becomes 

{ V , ,  V , + , ) = O  (39) 

which implies that the model may be solved by a Jordan-Wigner transformation as 
described in that paper. The two representations are associated with different boundary 
conditions (see Martin 1986, Schultz et al 1964). This leaves q = 3  as the simplest 
unsolved case. 

Even this formal procedure fails for the Beraha-valued Temperley-Lieb representa- 
tions. We know from explicit calculations (Martin 1986) that the decomposition here 
includes representations such as ( s1 = 2, s5 = 4) for q = 2, which never occur in the Potts 
model and have non-vanishing idempotents. 

Note that the matrix trace immediately satisfies Jones' trace condition for the Potts 
representation because of the degeneracies nr (cf Jones 1983). For example, with 
t r  ( 1 )  = 1 and Tr ( e ? )  the unnormalised trace of e, (equation (8))  in the mth irreducible 
representation we have, for 1 = 2n - 1 ,  

(see the appendix or I). For q = 1,2 ,3  the sum is over only the first 1 , 2  or 3 irreducible 
representations. 

To summarise: we have generalised the ABF-based scheme to construct all known 
representations of the { U , ,  i = 1 ,  l } ;  we have proved that this is the complete set for 
1 = 1,2  and we have obtained the degeneracies of the transfer matrix spectrum for the 
Potts model and the non-Beraha staggered ice model. 

Appendix 

For completeness we give some useful results not explicitly stated in the text. 
In addition to the irreducible representations of the Temperley-Lieb algebra with 

(2m + a )  < r (m, a, r defined as in the text) there are, in general, irreducible representa- 
tions associated with each m =0,  1, 2 , .  . . , n (where 2n (even) or 2n - 1 (odd) is the 
number of operators). A general recursion relation for the dimensions "'CL of irreduc- 
ible representations may be given as follows. 

For (2m + a )  < r (suppressing the index m )  
r - ?  

c:= c c:,,, 
, = I  
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where 
J - 2  

c:,, = CL-1- c c : , - l , K  

= O  otherwise 

if ( 2 n  + a )  ~ j + 2  
K = l  

so that subsequent dimensions can be obtained from the first non-zero CL for each m :  

m=O CA= 1 ( r a l + a )  

m = l  c;=1 ( r a 3 + a )  

m = 2  c;= 1 ( r  3 5+ a )  

etc 

and for kr = ( 2 m  + a )  (where k = 1, 2 ,  3 , .  . .) 
c:, = c;. 

The proof of the recursion is indicated in I, but it should be noted (by comparison 
with the present result) that in I both the recursion, as it appears in the text above 
(6), and the initial values are wrongly stated! 

An alternative description of the irreducible structure of the algebra is obtained by 
noting that, on discarding the last operator, the mth representation for I operators 
contains c copies of the ( m  + 1 - a) th and d copies of the ( m  + 2 - a) th representations 
for ( I  - 1)  operators, where a = 1 if ( I  - 1) is odd, a = 2 if ( I  - 1) is even; and c = d = 0 
if the representation is not defined; d = 0 if ( 2 m  + 4- a )  = kr ( k  = 1 , 2 , 3 ,  . . .); d = 6 if 
( 2 m  +4- a )  = k r +  1; and c = d = 1 otherwise (cf Jones 1983, S determined above). 

Finally we note that, provided r > 2 m  + a, the idempotents defined in (6) of the 
present paper may be used to give the precise form of the unnormalised idempotents 
Rm discussed in I ,  for which 

R d R m  = 5 m  ( x 1 Rm 

with x any product of U, operators and tm(x) a scalar. The precise form is 

R , =  fl U,,-, idem,-,[m+l] c:: ) 
where idem,-,[ m + 13 is obtained from idem[ m + 1 3  by making the substitution 

U, + U,i2(n-m) 

(the form given in I is correct only for m =0,  1). 

References 

Andrews G E, Baxter R J and Forrester P J 1984 J .  Stat. Phys. 35 193 
Baxter R J 1982 Exactly Solued Models in Sfofistical Mechanics (New York: Academic) 
- 1986 lecture, unpublished 
Birman J S 1974 Braids, Links and Mapping Class Groups, Ann. Math. Studies vol82 (Princeton, NJ: Princeton 

Friedan D, Qiu Z and Shenker S 1983 Preprint, Conformal Invariance, Unitarity and fwo-dimensional critical 

Hamermesh M 1962 Group 771eor.v (Oxford: Pergamon) 
Jones V F R 1983 Invent. Moth. 72 1 

University Press) 

exponents, Workshop on Vertex Opera tors, MSRI Berkeley 



Temperley- Lieb algebra 591 

- 1985 Bull. Am. Math. Soc. 12 103 
Kauffman L H 1986a Preprint, New Invariants in the Theory of Knots 
- 1986b Preprint, Statistical Mechanics and the Jones polynomial 
Kuniba A, Akutsu Y and Wadati M 1986 J. Phys. Soc. Japan 55 3285 
Leech J W and Newman D J 1970 How to use Groups (London: Methuen) 
Magnus W, Karrass A and Solitar D 1975 Combinotionul Group Theory (New York: Dover) 
Martin P P 1986 J. Phys. A: Marh. Gen. 19 L1117 
- 1987a J.  Phys. A: Math. Gen. 20 LS39 
- 1987b J. Phys. A: Math. Gen.  20 L601 
Schultz T D, Mattis D C and Lieb E 1964 Rev. Mod.  Phys. 36 856 
Temperley H N V 1986 Preprint, Potts models and related problems 
Temperley H N V and Lieb E H 1971 h o c .  R. Soc. A 322 251 
Tung W K 1985 Group Theory in Physics (Singapore: World Scientific) 


